
,AD-A238 680:

ETL-SR-7

PDEF: A Standard File
Format For Data
Interchange DTIC

SEL.ECTE
SJUL 191991U

D
Michael M. McDonnell

January 1991

Approved for public release; distribution is unlimited.

U.S. Army Corps of Engineers
Engineer Topographic Laboratories
Fort Belvoir, Virginia 22060-5546

¢> 91-051686 97 1 O4 2 i
9Ih l9 7 1 6 r4IE

- I Form Approved
REPORT DOCUMENTATION PAGE0M o00408

Pabsc 'eocn.-9 burden for th-s SOIcnof.f~va , etrmated 1 .^ A *041e *Out off C$0C'rli inluingft th t'.t t 'e CAnfl9 OMN~ f f. *011Q , Ohe &Um2 Of.1 a t his94t?'e'.ng And mananrgthe data rede se tgad..e..qU~ e~to fnomlo.$nd comments, 1e., U, W.'de ".6at oe C,,7fe a Oe t fs
11:1~o ,M100 Wi n . tu l suggetfis for pau~c,fig th I udt '0 NiVShet nqCI ealdq.aner$s $Ien(es Directorate Or 'nfflon Ode'..on ,0 jrw. 'I'S 17$ette.on

1. AGENCY USE ONLY (Leave blank) 12. REPORT DATE 3. REPORT TYPE AND DATES COVERED
I January 1991 Final: I Jun 1989 - 1 June 1990

4. TITLE AND SUBTITLE S. FUNDING NUMBERS
PDEF: A Standard File Format for Data Interchange PR: 4AI61 102B5jC

TA: CO
6. AUTHOR(SU:01

Michael M. McDonnell

7PERFORMINGORGANIZATION-NAME(S 3N-D S(S . PERFORMING ORGANIZATION
7 ANADQRESSES)REPORT NUMBER

U.S. Army Engineer Topographic Laboratories,
Fort Belvoir, Virginia 22060-5546 ETL-SR-7

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRIESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

III. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12lb. DOISTRIBUTION CODE

Approved for public release; distribution is unlimited.J

13. ABSTRACT (Maximum 200 worch)
This report explains a new method of encoding data in a set of files that allows advantages over current form t
and methods. A new format is necessary because all current widely-available file formats retain restrictions
(such as fixed field lengths) that are no longer necessary with modern programming languages. In particular,
the ability to be parsed by FORTRAN programs was formerly an important requirement. The limitations of
FORTRAN lead to file formats that are clumsy and difficult to work with. The proposed format has a simple
syntax and flexible semantics. The format is efficient both for computers and people. It is efficient for
computers because it makes use of the powerful parsing tools available for the C programming language. It
efficient for people because data descriptions 'are in a human-readable form and the content of a data file can e
understood without a user's manual. The bulk of this report is in appendixes which give illustrative examples
Examples are presented for raster, quadtree, and vector data formats since these formats are especially
prevalent in spatial data systems, a specialty of the U.S. Army Engineer Topographic Laboratories. PDEF
stands for Protean Data Exchange Format.

14. SUBJECT TERMS (ieographic Information System, Data Interchange, 15. NUMBER OF PAGES
Spatial Data Storage, Data Exchange, Reformatting. 54_________

15. PRICE CODE

17. SECURITY CLASSIFICATION 1B. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT I OF THIS PAGE OF ABSTRACT
UNCLASSIFIED I UNCLASSIFIED IUNCLASSIFIED UL

NSN 7540-01-280-S500 Standard Form 298 (Rev. 2.89)
Preur-bed by A~asi Std Z39.1$

CONTENTS

Title Page

PREFACE ii

LIST OF ACRONYMS iii

INTRODUCTION 1

A GENERAL DESCRIPTION OF PDEF 2

The Information File 4

Binary Data Files 5

PDEF USES

Data Reformatting 6

A Primary Data Format 7

Types of Data That May Be Handled 7

General Discussion; Syntax and Semantics 8

CONCLUSIONS 10

REFERENCES 11

APPENDICES

A. Example PDEF Information File 12

B. Key Phrase Files in PDEF and C 15

C. C Program to Parse SPOT Data Without PDEF 22

D. PDEF Parser for SPOT Data 37

E. PDEF Program to Use Parsed SPOT Data 44

F. Storing Vector and Polygon Data Using PDEF 48

i

PREFACE

This report was written at the request of Mr. Homer Babcock, Chief Geographic
Information Systems Branch, Geographic Systems laboratory, U.S. Army Engineer Topographic
Laboratories (ETL). The work was done in the ETL Research Institute, Center for Artificial
Intelligence under DA Project 4A16110102B52C, TAsk CO, Work Unit 014, "Artificial
Intelligence Concepts for Terrain Analysis."

The report was prepared between November 1989 and June 1990 under the supervision
of Mr. John Benton and Mr. John Hansen, succ.ssive Team Leaders of the Center for Artificial
Intelligence and of Dr. Richard Goinez, Director, Research Institute. Mr. Hansen's title was
amended during this period to Chief, Artificial Intelligence Division.

Col. David F. Maune, EN, was Commender and Director, and Mr. Walter Boge was
Technical Director of the U.S. Army Engineer Topographic Laboratories, Fort Belvoir, Virginia
22060-5546, during preparation of the report.

LAcce--o,- For
NTIS CRAI
DTic TA3 1l

IU..ai:-.ou:.ced
J *. t ,:c a ti O n q

.................

By
Dist. ibutio .I

Availability Codes

Avaii a,.d i or
Dist Spactal

awn

ii .I I

_ m

LIST OF ACRONYMS AND GLOSSARY

ADRG: Arc Dig-Oized Raster Graphics; digital images of printed maps as produced by the
U. S. Defense Mapping Agency.

ASCII: American Standard Code for Information Interchange; a conventional coding that
epresents alphanumeric characters by using numbers from 0 through 127.

C: A computer programming language.

FORTRAN: FORmula TRANslation; a computer programming language.

GIS: Geographic Information System. This is a computer program or a set of computer
programs that allows the manipulation and display of spatial data and is used particularly
for terrain data.

ISO: International Standards Organization, a European non-profit organization dedicated to
the creation and promulgation of manufacturing standards.

Parse: In computer science this is the process of turning input data into data structures
inside a computer.

PDEF: Protean Data Exchange Format.

Semantics: The context-dependent meaning of data. The semantics of data can be con-
sidered separately from the syntax.

SPOT: Systeme Probatoire d'Observation de la Terre. A satellite launched by the French
national aerospace consortium (CNES) which makes images of the earth in three spectral
bands.

Syntax: The form that data takes as opposed to the meaning that the data may have in
some context.

XDR: eXternal Data Representation. This is a public-domain method of representing com-
mon types of computer data in a machine-independent form. XDR was designed and fos-
tered by Sun Microsystems, Inc.

iii

PDEF: A STANDARD FILE FORMAT FOR DATA INTERCHANGE

INTRODUCTION

The Protean Data Exchange Format (PDEF) is a set of computer programs which can be
used to transform data between different systems which do not understand each other's for-
mats. The problem of data transformation is not restricted to any particular discipli-'-, but
those of us concerned with digital terrain data have felt this problem acutely as we have found
that different Geographic Information Systems (GIS) cannot use each other's data. Although
PDEF was written to alleviate this particular problem, its uses are more general than the spe-
cific problem for which it was originally written. PDEF was designed primarily to be easy to
use since reformatting decisions must be made by people. This report will examine both the
format and the uses of PDEF.

This report is intended for both programmers and non-programmers who need to under-
stand data formats and data format transform techniques. Programmers can find sufficient
detail in the appendixes to implement PDEF. Programming examples are given there for vari-
ous data types, such as raster, quadtree, and vector data. Non-programmers will find guidance
in the body of the report on how to express their data-reformatting decisions in PDEF so that
PDEF will reformat the data properly.

To understand PDEF, we need a brief review of data file formats. A file is a separate
data entity on a disk or tape. It has its own name on a disk and is separated from other files on
a tape by an end-of-file mark. Some files are further subdivided into records and fields.
PDEF does not use any subdivisions finer than files. There are no records or prescribed fields
defined in PDEF

Data is commonly stored and transferred from one computer to another by using conven-
tions in the formatting of the file, or files, containing data. It is common to have a header as
the first part of a file. The header contains data about the file as a whole, such as the name of
the data set, and also contains format information to help in reading the rest of the file. Head-
ers typically contain a mixture of printable and binary data and are difficult to parse (i.e.
understand) without a manual. There are no headers in PDEF. The rest of this introduction
gives the rationale for the design of PDEF.

Designing a new data format (and implementing tools such as parsers to allow people to
work with it) is a large ,ti;de. ,king and should only be done if there is a strong need. Is there,
then, a good reason for defining PDEF? One reason is the influence of old formats and old
languages such as FOR, TRAN. FORTRAN has dominated the design of file formats to date
and causes many of the problems users have when attempting to understand and work with a
current format.

FORTRAN cannot allocate data dynamically. This lack of dynamic allocation forces
data file formats to have fixed field lengths, which causes some problems. For example, if a
user wants to name a file using a title that is 20 letters long but the data file has only set aside
15 spaces for the name, then the desired filename must be shortened to a length of 15 letters
or less. Carried to extremes, this leads to names for functions and variables that are restricted

to a few upper-case ASCII characters and therefore have almost no semantic content. What
does a function named SAXPY or QRTPE do? There is no way to tell without a manual.
Similarly, and more to the point of this discussion of data formats, what data does field
FTLLP contain? Again, there is no way to tell.

A problem encountered when dealing with many current data formats is a waste of space
on data transfer media. If fixed-length fields have to be made large enough to contain the
largest expected data element, then for an average data element there will be unused space
that must be transferred on the tape anyway. Attempts to overcome this limitation, such as the
ISO 8211 data transfer standard,1 have a daunting complexity. The author has recently writ-
ten a parser for ISO 8211 and it was a difficult task.

Another problem with most current formats is that they were designed by committees
and therefore have a lack of conceptual integrity and an unnecessary complexity which is
characteristic of such works. As an example, the proposed spatial data transfer specification
which has been published by the Digital Cartographic Data Standards Task Force (DCDSTF)
has a specification that is over 120 pages long.2 Such specifications as DCDSTF are unwork-
ably complex and will have to be changed later, leading to problems with versions of the
"standard." In contrast, PDEF is simple. This simplicity is mostly a result of separating syn-
tax from semantics, as will be illustrated later. Simplicity and human-readability were the
guiding precepts in its design. However, simplicity must not be sacrificed to usability or use-
fulness. PDEF proves that a format can be both simple and useful.

A GENERAL DESCRIPTION OF PDEF

In PDEF 11, single data set is typically stored in several separate files, with (mostly) meta-
data in those files that are readable by people. Meta-data is data about data. It includes such
information as where the data is found, how many bits there are per data element, and whether
data is to be read as a string of characters, as an integer, as an array of 32-bit floating-point
numbers, etc. Although most current file formats contain such information in a file "header,"
PDEF has no file headers. In PDEF, a separate, human-readable file contains the meta-data
typically found in headers. The bulk of the data is then placed in another file or set of files
that contain nothing 'Out binary data. Binary data files have the following characteristics:

1 Injormation Processing - Specification for a data descriptivefilefor information interchange, Internation-

al Organization for Standardization publication ISO 8211-1985(E), 15 Dec 1985.
2 Digital Cartographic Data Standards Task Force, "Draft Proposed Standard for Digital Cartographic Data"

The American Cartographer, vol. 15, p. 2 1.

2

* no headers
* no trailers
" no field padding
" no field separators (at least none required)

in short, no wasted space. With the exception of a defined field separator, these characteristics
are also true of meta-data files, which I will call informationfiles from here on.

The issue of human readability needs to be discussed. Why is it desirable to have data
files be readable by people? Are there penalties to be paid in computer efficiency or in stor-
age usage if human-readable information files are used?

A benefit of human-readable information files is that a manual is not needed to under-
stand something about a data set. It frequently happens that a data set is presented to a poten-
tial user without any accompanying documentation. Therefore, understanding something
about the data without ;eferring to auxiliary documentation is often useful, and can even be
crucial, since you can't read the data unless you know its formats.

Another benefit of human-readable information files is that it is easier to write a parser
for these files than if nonprintble data has to be dealt with. Appendix C illustrates parsing of
a SPOT3 data file using the fixed-field data that comes on the SPOT tape. Appendixes B, D,
and E illustrate parsing of the same file using a PDEF information file. You can see that the
parsing is much more understandable when using PDE. As illustrated in appendix D, It is

also possible to use the parsing tools lex4 and yacc,5 which are of great help in writing parsers.
While lex and yacc were created on Unix systems, they are now available under all major
operating systems such as MSDOS, OS/2, and VMS.

Human-readable files do take more storage on disk or tape than binary files of the same
data. For this reason, PDEF defines two types of files. The human-readable file is only used
for data that must be read to understand the data set as a whole. Its inefficient storage is not a
problem since binary data files are much larger than human-readable files for the large data
sets that PDEF was created to manipulate.

Having mentioned the possible usefulness of PDEF, the PDEF file formats will now be
described as will some of the software tools that manipulate them. The body of this report
describes the abstract characteristics of PDEF, which are simple, but file formats rely on a
consideration of detail. This detail is given in the appendixes which provide examples of pos-
sible uses of PDEF.

3 Format for the SPOT Image Corporation Computer Compatible Tapes, SPOT Image Corporation, Aug
1986.

4 M. E. Lesk and E. Schmidt, "Lex - A Lexical Analyzer generator" in Unix Time-Sharing System: Unix
Progammer's Manual, Vol. 2B 7th edition, AT&T Bell Laboratories, 1979.

5 S. C. Johnson, "Yacc: yet another compiler-compiler" in Unix Time-Sharing System: Unix Progammer's
Manual, Vol. 2B 7th edition, AT&T Bell Laboratories, 1979.

3

A large data set in PDEF consists of at least two separate files. One of these files iF an
information file, which contains general information about the data such as file offsets and
how the data are to be parsed. Appendix B contains a PDEF information file for SPOT satel-
lite data. There is usually only one information file for a given data set. Besides the informa-
tion file, there is usually at least one binary data file. The information file format will be dis-
cussed first, followed by a discussion of the binary data file format.

THE INFORMATION FILE

Information files consist only of printable ASCII characters. In the ASCII numeric
sequence, printable ASCII characters include characters' '(space) through '' (tilde) inclusive
and also include the hexadecimal characters OA (newline) for line breaks and 09 (tab) for
spacing. This is all in accordance with the C programming language practice of considering
"white space" characters to be among the printable ASCII set, where white space characters
are defined as space, tab, and newline. No other characters are allowed in information files.

An information file without nonprintable characters can be easily viewed without bom-
barding a terminal or workstation with what may be in-band control information, thus putting
it into undesirable states. No special programs are needed to view the information. Any pro-
gram that writes text data onto the screen is usable for viewing information files, and ordinary
text manipulation programs can be used to create or modify information files.

Information files have two reserved characters, the pound sign '#' and the colon ':'. The
pound sign character '#' indicates a non-parsable comment. Any characters on a line from the
first occurrence of a '#' until the end of the line (i.e. until a newline) are not read by the infor-
mation file parser. The other reserved character is the colon ':' which is used to separate a key
from the data associated with the key. Appendix A shows an example information file that
has been rather strangely formatted to show some of the possible uses of the '#' and ':' char-
acters.

The "key" is purposely not called a "keyword" because a'" ey" is a phrase that may con-
tain many words. Keys should be designed to be very descnptive. A poor key would be
cryptic such as "redoff," while an equivalent good key would be "file offset to beginning of
red image." Keys must begin a line. This means that either they must appear at ihe very
beginning of the information file or they must always follow a newline. Keys are separated
from the data to which they refer by a colon ':'. Leading and trailing spaces or tabs in a key
are ignored by the parser. See the comments in the information file in Appendix A for further
details.

Appendix A al io shows how a single key may refer to a data structure rather than a sin-
gle data item. There the structure is a colormap which consists of a repeated sequence of
[pixel red green blue] values. Data structures can be defined in a PDEF information file too.
For example, there may be entries like this:

4

establish how we encode a colormap

colormap sequence: red green Due pixel
color maximum value: 65536 # fbr the X Window System
pixel maximum value: 255
colormap:

3456 12345 8976 0
12345 8974 3458 1
and so on ...

Other types of composite data, such as matrices or coordinate tuples, may be handled simi-

larly. Here is a possible representation of Quam's block storage of raster data,6 such as is
used for ARC Digitized Raster Graphics, a product of the U.S. Defense Mapping Agency.

Data type: raster # also vector, quadtree, etc.
Storage format: blocked # could be RGB, band interleaved, etc.
Block size: 128

and so on...

An example of how quadtrees may be encoded will be shown later. Appendix F presents a
design for storing vector and polygon data.

BINARY DATA FILES

It may be that a data set encoded in PDEF does not contain any binary data files what-
ever; all of the data being placed in the information file. This is only reasonable, though, for
small data sets. For large data sets, one or more binary data files should be used in addition to
the information file.

Binary data files contain data in which the largest guaranteed unit of reference is the
8-bit byte. The information file tells the user how to interpret these data bytes. Because of
the vagaries of byte ordering on different computers, the information file may specify how to
assemble larger data units from bytes. For example, data bytes may be read in the order 1 2 3
4, but a 32-bit integer formed from these bytes may have to be written in the order 2 1 4 3.

Data ordering is a significant problem. The author uses the conventions described in Sun
Microsystem's eXternal Data Representation (XDR) standard for representing more complex
data types. XDR is explained in the document RFC1014 which may be gotten through the
Internet by ftp from nic.sri.com or by request from Sun Microsystems, Inc. Data type encod-
ing is, however, not enforced by PDEF and so will not be discussed here further.

6 L.H. Quam, "A Storage Representation for Efficient Access to Large Multidimensional Arrays", Proceed-

ings DARPA Image Understanding Workshop, 104-111, 1980.

5

Appendix E shows that a separate information fiJe may be used to work with some data
format without reformatting it into an intermediate binary format. The programs in Appendix
E parse a SPOT file in its distributed format; headers in the SPOT data are just ignored. This
technique allows a common set of parsing and data manipulation programs to work on various
types of data without reformatting the data file itself. This is a significant advantage for large
data sets where reforr ,tting the data would take much computation and use a large amount of
storage.

USE OF PDEF FOR DATA REFORMATTING

As mentioned in the introduction, nothing except valid data should be stored in binary
data files. If applicable, one may, of course, specify fixed-length fields, padding, headers, and
all the other apparatus found in various file structures. This flexibility has a use in that it is by
this means that data can be exchanged from one format to another. It is this problem, data
reformatting and exchange, that inspired work on PDEF (and is the source of the name pro-
tean).

The combinatorics of data reformatting mandate a common intermediate format. The
following table shows how the number of parsing programs needed is affected by the pres-
ence of an intermediate file format.

Table 1. Number of Parsing Programs Needed

parsing programs needed parsing programs needed
number of formats without PDEF with PDEF

8 56 16
9 72 18

10 90 20
100 9900 200

The relevant mathematics are that without a common file format one needs n(n - 1)
reformatting programs and with a common file format only 2n reformatting programs. Thus,
the first problem is of order n squared while the second problem is of order n.

The table doesn't tell the whole story, though. The programs that have to be written fall
into two equal-sized groups, which is where the factor of 2 in 2n comes from. Figure 1 shows
the situation. The programs that convert some other format into PDEF have a common back
end in that they all feed into PDEF. Similarly, the programs that convert from PDEF to
another format have a common front end that reads the PDEF file. When these commonalities
are considered, the problem simplifies further to essentially n programs instead of 2n pro-
grams. There is no doubt that an intermediate file format is needed if data reformatting
among many formats needs to be done.

6

Figure 1: Diagram of interchange among five data formats using PDEF as an
intermediate format. All data formats may be reformatted to PDEF and then
PDEF may be reformatted into any other format. The arrows represent pro-
grams that perform data reformatting and the rectangles represent the formats.

PDEF AS A PRIMARY DATA FORMAT

Besides serving as a means of reformatting data, PDEF can itself be a primary data for-
mat. This means that devices such as image scanners and telemetry systems can encode their
data in PDEF for transmission. The readability of PDEF information files then a.,ows the
operator to quickly check data content. Software systems such as a GIS can also be based on
PDEF, thereby allowing easier conversion of data to and from foreign formats. The U. S.
Army Engineer Topographic Laboratories (ETL) will use PDEF as the format for data gener-
ated by the Terrain Information Extraction Systcm (TIES), which is a developmental system
allowing Army units to extract terrain data from digital photography in the field.

TYPES OF DATA THAT MAY BE HANDLED

Current experience with PDEF has been only with regard to raster data files. In order to
be useful as a general data exchange file (i.e. in order to be truly protean), PDEF has to be
able to handle other data types and structures as well. An example relevant to ETL is GIS
data, which includes vectors (with associated attributes) and quadtrees as well as gridded
(raster) data. Below is an example of a quadtree structure defined in PDE. Although the fol-
lowing is not the only way to encode a quadtree in PDEF, it is an example meant to indicate
that PDEF is capable of doing this.

One way to store a quadtree on a disk or tape is to define a traversal order of the tree and
then to linearize the tree to a file by traversing it. To rebuild the tree from the file, just build it

7

in the same order when the file is read. Here is a section of an information-file dealing with
quadtrees:

Traversal order: preorder
Quadtree node data order: attribute NW NE SE SW
Attribute: generic pointer
NW: boolean
NE: boolean
SE: boolean
SW: boolean

binary data file is just quadtrees, so offset is zero

Offset of root quadtree in data file: 0

Given this information, a parser program can go through the binary data file and add in
the nodes for which the boolean attributes of its father node are TRUE, meaning that there is a
node under this quadrant. This simple scheme defines leaf nodes as having all four quadrants
FALSE and with an attribute assigned to its area. Note that storage can be saved by encoding
the four leaf nodes in a single byte since they only need one bit each to perffo)rm their function.
Data descriptions, such as "boolean" or "generic pointer," can be further described by other
entries in the information file. Other needed data would certainly include geographic coordi-
nates of the comers of the region encoded in the quadtree. Individual quadtree nodes need not
carry their coordinates along with them since these are implicit in the tree.

Another data type of great interest to the GIS community is vector data. A realistic
design of a vector data format for PDEF is too big to be given in the body of this report; how-
ever, Appendix F contains an example design based on a United States Geological Survey for-
mat for vector and polygon data, such as is used ir a GIS. All essential information such as
vector ordering is preserved.

GENERAL DISCUSSION; SYNTAX AND SEMANTICS

PDEF defines the syntax of a data exchange file format and not the semantics of such a
format. PDEF does not address some of the most difficult problems associated with reformat-
ting data, such as forcing a match between data fields that are not strictly conformable. If a
name field in one format has 30 characters allocated to it and another only allows 10 charac-
ters, how is a conversion to be made? Similarly, if needed data in some format is simply not
available in a precursor format, what defaults should be used to fill in the blanks in the output
format? Should they be filled at all? Problems such as these are matters of policy and are
therefore beyond the scope of PDEF because it is only a file formatting vehicle. However,
PDEF makes it easier to address these issues of reformatting policy.

8

For one thing, having a protean and human-readable format for information storage and
exchange means that those people charged with deciding the form of data storage or inter-
change can encode their decisions directly in the information file that is to be parsed by a
computer. This makes the data formatting readily and directly reviewable. There is no dan-
ger of a mistranslation between what the computer must read and what people can read since
information files can be read by both people and computers. Using the information file for
this purpose prevents such mismatches. It is best to avoid the production of auxiliary docu-
ments detailing formatting decisions since the PDEF information file and the auxiliary docu-
ment may disagree.

There are some concerns that need to be addressed wuhich come from having a separate
file that includes the parsing information for binary data files. These concerns are as follows:

" The information file may be separated from the data files to which it refers.

" The information file is both too easy and too difficult to change. It is too easy to
change because it is a text file and can therefore be modified by a text editor so that it no
longer has accurate data. It is too difficult to change because a program may modify the
binary data without modifying the information file.

In general, a concern exists that there is too much decoupling between the information file and
the data it describes.

Although the information file may iideed be separated from the file it describes, many
current data formats make use of separate files and this does not seem to be a significant prob-
lem. SPOT and ADRG data are both distributed as sets of files for a single coverage area.
These files have a complex interrelationship that is much more difficult to work with than the
simple scheme described here. Since no documentation exists which relates operational prob-
lems caused by these sets of files becoming dissociated, this is probably more of a theoretical
than a practical problem.

Having the information file track the data file is a matter of convention that is not
enforced by the format itself. A reasonable convention is to have information files be pro-
tected so that they are read-only for users and can only be operated on by privileged pro-
grams. Data files can be treated in the same way. It is then the responsibility of programs that
modify the data to concurrently modify the information file. To be even more certain that
information files and data files are consistent, a given set of information and data files should
not be modifiable at all except under regulated circumstances. What is meant here is that if
the data set is to be modified, it must be copied to a new data set and a new information file
generated to describe it. This keeps a history of data processing information, which it is prob-
ably desirable to have anyway. Advances in data storage media have alleviated the problem
of storage of large data sets, and data can in any case be overwritten, if this is needed.

Pascoe and Penny have recently critiqued the problem of producing a standard inter-

9

change format for GIS data.7 Since they do not start from the assumption that there can be a
separation of syntax from semantics for a data exchange format, they are led to the conclu-
sion, repeatedly stated, that any such standard must be very complex. Indeed, if all the deci-
sions about data semantics are considered, then the result is very complex. This report pro-
poses that the format of interchange may itself be very simple and can help with the more dif-
ficult policy problems concerning data reformatting.

Data for an output record in one format may have to be derived from a number of files in
some other format. This means that searching of several files must be done for these cases to
generate a single output datum. Pascoe and Penny advocate reading all input data into a rela-
tional database management system (RDBMS) to distribute the data into a set of relations that

can then be searched, as needed, for outputting a new format.8 While this insulates the pro-
grammer from explicit searching for data, the redistribution of data may not be a frequent
occurrence, and the apparatus of an RDBMS seems unnecessary. This is certainly true of
raster data, which will be closely associated in any format and therefore does not have to be
redistributed. Pascoe and Penny mention the large amount of computer resources needed

when using an RDBMS; 9 file searching as needed should not impose as much of a burden.
Experience with PDEF wili show whether it is an efficient means of transferring information
or whether an RDBMS is a needed adjunct. As mentioned above, much of the initial data
may be retained in the original format and only parsed out as needed. The goal should be to
do as little reformatting as possible.

SUMMARY AND CONCLUSIONS

PDEF provides a powerful, simple, and human-readable method of encoding data in a
form that is easily parsable by automatic computer methods. Since parsers are written in
yacc, they are expressed in a formal syntax grammar (Backus-Naur form) and are easy to
write and modify. PDEF is superior in simplicity and power to other formats and allows effi-
cient data storage. Owing to its simplicity, it is unlikely that future versions of PDEF need to
be designed. This ensures that there will not be outdated versions of PDEF that must be
accommodated in the future. PDEF does not have the disadvantages pointed out by Pascoe
and Penny for other data exchange formats and can serve as a much more tractable and pro-
tean standard than current formats.

7 R. T. Pascoe and J. P. Penney, "Construction of Interfaces for the Exchange of Geographic Data" Int. 1.
Geographical Information Systems, vol. 4, No. 2, 147-156, 1990.

S Ibid.

9 Ibid.

10

REFERENCES

Information Processing - Specification for a data descriptive file for information inter-
change, International Organization for Standardization publication ISO 8211-1985(E),
15 Dec 1985.

Digital Cartographic Data Standards Task Force, "Draft Proposed Standard for Digital
Cartographic Data" The American Cartographer, vol. 15, p. 21.

Format for the SPOT Image Corporation Computer Compatible Tapes, SPOT Image
Corporation, Aug 1986.

M. E. Lesk and E. Schmidt, "Lex - A Lexical Analyzer generator" in Unix Time-
Sharing System: Unix Progammer's Manual, Vol. 2B 7th edition, AT&T Bell Labora-
tories, 1979.

S. C. Johnson, "Yacc: yet another compiler-compiler" in Unix Time-Sharing System:
Unix Progammer's Manual, Vol. 2B 7th edition, AT&T Bell Laboratories, 1979.

L.H. Quam, "A Storage Representation for Efficient Access to Large Multidimen-
sional Arrays", Proceedings DARPA Image Understanding Workshop, 104-111, 1980.

R. T. Pascoe and J. P. Penney, "Construction of Interfaces for the Exchange of Geo-
graphic Data" Int. J. Geographical Information Systems, vol. 4, No. 2, 147-156, 1990.

11

APPENDIX A. EXAMPLE PDEF INFORMATION FILE.

This appendix contains an illustrative PDEF file which is formatted and commented to
show what is possible using PDEF.

12

This is an example of an information file for ETL data such as
digital images and reformatted DMA data.
These lines are comment lines and will not be parsed.

Anything after the '#' on a line is ignored; even '#' #####.

Blank lines are ignored too.

Keys can appear in either UPPER or lower case or any combination of
cases as long as they begin at the start of a line and end with a ':'.
The colon is not part of the key but it is a reserved character
and may not appear in text. The only two reserved characters are
':' and '#' for keys (':') and comments ('#'). Note that
colons ::::: are also okay in comments.

WIDTH: 512
This comment should not appear in the output when this file is parsed.

Height:
This comment should not appear either, but -1004
should. Note how values associated with keys
may appear anywhere after them and not necessarily
on the same line. Any combination of spaces, tabs,
and newlines may appear between a key and its value.
Note, however,that a comment line like this
may NOT be between a key and its matching value
if the matching value is a string. Otherwise it's
okay; like here where the value is an integer: -1004

-1004

Here is an invalid key to check error handling
foobar: 1024

Comment:
This is a keyed comment.
I'm extending it over several lines to see if the parser keeps the
newlines where I put them.

Including blank lines.

Latitude:123.4564 # Note no space necessary between key and value.
Longitude:N0354566 # This value is a string; Latitude was a

floating-point number

title: Mike McDonnell's test information file to check parsers.

BITSPERPIXEL: 8

If key phrasos are allowed as well as keywords,
then the following is legal.
BITS PER PIXEL: 24

TYPE: RGB
Tile Size: 128

13

Colormap:
These comment lines and the formatting are only to help the user read
the colormap info. The computer just looks for groups if four
consecutive numbers divided by whitespace.

Pixel Red Green Blue

1 256 256 256
2 512 512 512
3 768 768 768
4 1024 1024 1024
5 1280 1280 1280
6 1536 1536 1536
7 1792 1792 1792
8 2048 2048 2048
9 2304 2304 2304

10 2560 2560 2560

The groups of numbers can even be interrupted with blank lines and
comments. No problem.

11 2816 2816 2816
12 3072 3072 3072
13 3328 3328 3328
14 3584 3584 3584
15 3840 3840 3840
16 4096 4096 4096
±7 4352 4352 4352

Or the data can be irregularly spaced like below. If there are not some
multiple of four in the number of numbers the parse will abort, so be
sure you have full sets of [pixel red green blue) data.
An aside here is that the parse does not check for ranges of data, but
some values of any of these numbers will be nonsense. It is up to the
application to check the ranges of parsed-out data.

18 3000 2000
5000 255 65536 65536 65536

end: # Good idea to terminate an information file this way.

14

APPENDIX B. KEY PHRASE FILES IN PDLF AND C.

This appendix contains both a "keys.h" file needed to parse SPOT data and a PDEF
file for the same data. The keys.h file is the repository of all the allowed key phrases for a
given data format. The PDEF file contains as many of these key phrases as are needed to
work with the data at hand. Note that the keys.h file ends with an empty string so that the
parser knows whet it has reached the end. Also notice that this parser is case independent,
so all phrases in Ifeys.h use only lowercase letters. Case independence is not a requirement
of PDEF but is a useful convention that may be enforced by a PDEF parser. Case
independence is useful because it allows appropriate capitalization to enhance readability of
the information files.

Recently, the parsing of the keys file has been simplified by using the same lex and
yacc parsers as for an information file. Now a keys file (no longer a "keys.h" file) looks
like an information file without values for the keywords. This avoids subjecting the creator
of a keys file from following the C language syntax as for the example in this appendix
There was not time to include an example of this new keys file without affecting page
counts for publication, but as an example, the sequence

char *keys[] =
(
/*
* Start with the directory file keywords.
*/

"leader file type (a=ascii e=ebcdic)",
"leader file type name",
"leader file class",
"leader file class code",

is now replaced by

Start with the directory file keywords.

leader file type (a=ascii e=ebcdic)
leader file type name
leader file class
leade." file class code

Notice that trailing colons are not needed after each key since keys are not followed
by values in a key definition file. Instead a newline serves to separate keys.

15

* This is the include file for narsing a SPOT file once it has
* been put into PDEF format. A SPOT distribution contains three
* types of files:
* 1. tape volume directory files for each tape.
* 2. a leader file for the data set
* 3. imagery files which contain information headers as well as pixel data.
,

* There is also a trailer file which I do not use. See SPOT
* handbooks for more information about these files.
,

* Keywords (actually key phrases) are grouped according to which files
* they are derived from.
*/

char *keys[] -{

* Start with the directory file keywords.
*/
"leader file type (a=ascii e=ebcdic)",
"leader file type name",
"leader file class",

"leader file class code",
"leader file data type",
"leader file data type code",
"leader number of records in file",
"leader length of first record of file",
"leader length of largest record in file",
"leader file length type",
"leader file length type code",
"leader file starts on volume",
"leader f e ends on volume",
"leader lccation of fi.rst file record in this volume",
"leader number of records in this volume",
"leader notes",

"imagery file type (a=ascii e=ebcdic)",
"imagery file type name",
"imagery file class",
"imagery file class code",
"imagery file data type",
"imagery file data type code",
"imagery number of ;.ecords in file",
"imagery length of first record of file",
"imagery length of largest record in file",
"imagery file length type",
"imagery file length type code",
"imagery file starts on volume".
"imagery file ends on volume",
"imagery location of first file record in this volume",
"imagery number of records in this volume",
"imagery notes",

"trailer file type (a=ascii e=ebcdic)",
"trailer file type name",
"trailer file clas::",

16

"trailer file class code",

"trailer file data type",
"trailer file data type code",
"trailer number of records in file",
"trailer length of first record of file",
"trailer length of largest record in file",
"trailer file length type",
"trailer file length type code",
"trailer file starts on volume",
"trailer file ends on volume",
"trailer location of first file record in this volume",
"trailer number of records in this volume",
"trailer notes",

/*
* These are the leader file keywords.
*/
"center pixel latitude","center pixel longitude",
"center pixel row",
"center pixel column",

"corner 1 pixel latitude",
"corner 1 pixel longitude",
"corner 1 pixel row",
"corner 1 pixel column",

"corner 2 pixel latitude",
"corner 2 pixel longitude",
"corner 2 pixel row",
"corner 2 pixel column",

"corner 3 pixel latitude",
"corner 3 pixel longitude",
"corner 3 pixel row",
"corner 3 pixel column",

"corner 4 pixel latitude",
"corner 4 pixel longitude",
"corner 4 pixel row",
"corner 4 pixel column",

"nadir latitude",
"nadir longitude",

"photo orientation",
"direction of incidence (1-'left r=right)",
"photo angle of incidence with ellipsoid at center",

"sun azimuth",
"sun elevation",

"year",
"month",
"day",
"hour",
"minute",
"second",

17

"mission d",
"sensor id",
"spectral mode",

"pixels per line",
"number of lines'",

"band interleave factor",
"number of bands",

"preprocess level",
"recalibration designator",
"deconvolution designator",
"resampling designator",
"pixel width on ground in meters",
"pixel height on ground in meters",

/*
* These are the imagery file keywords
.*/
"number of image records",
"image record length",
"bits per pixel",
"pixels per pixel group",
"bytes per pixel group",
"pixel ordering in group",
"number of spectral bands",
"lines per image not including borders",
"left border pixe:ls per line",
"image pixels per line",
"right border pixels per line",
"number of top border lines",
"number of bottom border lines",
"interleave type",
"data records per line",
"data records per multispectral line",
"bytes of prefix data per record",
"bytes of image data per record",
"bytes of suffix data per record",
"prefix/suffix repeat flag",
"scan line number locator",
"image (band) number locator",
"time of scan line locator",
"left-fill count locator",
"right-fill count locator",
"left-fill bits within pixel",
"right-fill bits within pixel",
"maximum value of pixel",

/*
* Added to all keys[) arrays to provide termination. -mmm
*/
"end",

/* need this to find end of list. *

18

An example PDEF information file for a SPOT image.
Data was derived from a 2-tape SPOT dataset of Ft. Hood, TX area.#

First the volume directory data with a block for each of the
other file types in the disribution. There is a leader file,
an imagery file, and a trailer file in addition to the directory
file itself.
*
leader File type (A=ASCII E=EBCDIC): A
leader File type name: SPI X1B LEADBIL
leader File class: LEADER FILE
leader File class code: LEAD
leader File data type: MIXED BINARY AND ASCII
leader File data type code: MBAA
leader Number of records in file: 27
leader Length of first record of file: 3960
leader Length of largest record in file: 3960
leader File length type: FIXED LENGTH
leader File length type code: FIXD
leader File starts on volume: 1
leader File ends on volume: 1
leader Location of first file record in this volume: 1
leader Number of records in this volume: 0
leader Notes:

imagery File type (A=ASCII E=EBCDIC): A
imagery File type name: SPI XlB IMGYBIL
imagery File class: IMAGERY FILE
imagery File class code: IMGY
imagery File data type: BINARY ONLY
imagery File data type code: BINO
imagery Number of records in file: 9014
imagery Length of first record of file: 5400
imagery Length of largest record in file: 5400
imagery File length type: FIXED LENGTH
imagery File length type code: FIXD
imagery File starts on volume: 1
imagery File ends on volume: 2
imagery Location of first file record in this volume: 1
imagery Number of records in this volume: 4507
imagery Notes:

trailer File type (A-ASCII E=EBCDIC): A
trailer File type name: SPI X1B TRAIBIL
trailer File class: TRAILER FILE
trailer File class code: TRAI
trailer File data type: MIXED BINARY AND ASCII
trailer File data type code: MBAA
trailer Number of records in file: 3
trailer Length of first record of file: 1080
trailer Length of largest record in file: 1080
trailer File length type: FIXED LENGTH
trailer File length type code: FIXD

19

trailer File starts on volume: 2
trailer File ends on volume: 2

trailer Location of first file record in this volume: I
trailer Number of records in this volume: 0
trailer Notes:

Here is the data from the imagery file

Number of image records: 9012
Image record length: 5400
Bits per pixel: 8
Pixels per pixel group: 1
Bytes per pixel group: 1
Pixel ordering in group: 0
Number of spectral bands: 3
Lines per image not including borders: 3004
Left border pixels per line: 0
Image pixels per line: 3179
Right border pixels per line: 2121
Number of top border lines: 0
Number of bottom border lines: 0
Interleave type: BIL
Data records per line: 1
Data records per multispectral line: 3
Bytes of prefix data per record: 20
Bytes of image data per record: 5300
Bytes of suffix data per record: 28
Prefix/suffix repeat flag:
line locator: 1 4PB
band locator: 5 4PB
Time locator:
Left locator: 13 4PB
Right locator: 17 4PB
Left-fill bits within pixel: 0
Right-fill bits within pixel: 0
Maximum value of pixel: 254

Here is the data from the leader file

Center pixel Latitude: N0310627
Center pixel Longitude: W0974234
Center pixel Row: 1502
Center pixel Column: 1584

Corner 1 pixel Latitude: N0312510
Corner 1 pixel Longitude: W0975633
Corner 1 pixel Row: 1
Corner 1 pixel Column: 179

Corner 2 pixel Latitude: N0311915
Corner 2 pixel Longitude: W0971923
Corner 2 pixel Row: 1
Corner 2 pixel Column: 3179

20

Corner 3 pixel Latitude: N0305333
Corner 3 pixel Longitude: W0980532
Corner 3 pixel Row: 3004
Corner 3 pixel Column: 1

Corner 4 pixel Latitude: N0304740
Corner 4 pixel Longitude: W0972834
Corner 4 pixel Row: 3004
Corner 4 pixel Column: 2998

Nadir Latitude: N0310652
Nadir Lopnitude: W0981948

Photo orientation: 10.500000

Direction of incidence (L=left R=right): L
Photo angle of incidence with ellipsoid at center: 4.600000

Sun azimuth: 132.100006
Sun elevation: 69.000000

year: 1988
month: 05
day: 04
hour: 17
minute: 23
second: 05

Mission ID: SPOT1
Sensor ID: HRVI
Spectral mode: XS

Pixels per line: 3179
Number of lines: 3004

Band interleave factor: BIL
Number of bands: 3

Preprocess level: lB
Recalibration designator: 1
Deconvolution designator: 1
Resampling designator: CC

Pixel width on ground in meters: 20
Pixel height on ground in meters: 20
END:

21

J

APPENDIX C. C PROGRAM TO PARSE SPOT DATA WITHOUT PDEF.

This appendix contains the C language code that generates a PDEF file from raw
SPOT data. This code is rather complex and illustrates the difficulties in parsing a typical
data format.

22

* Struct for fixed part of each record, which is binary numbers. This
* is always found in the first 12 bytes of each record. All other
* information in the directory, leader, and trailer files are printable
* chars, usually ASCII.

/* A portable integer type */
struct rint{

char bytel, byte2, byte3, byte4;

struct fixed
struct rint record hum; /* assumes 4-byte int; little-endian*

char subl; /* first record sub-type */
char type; /* record type */
char sub2; /* second record sub-type; not used */
char sub3; /* third record sub-type; not used */
struct rint record-length;

/*
* Here is the data necessary to read a SPOT volume directory file. The
* volume directory is the first file on any SPOT tape. Parsing the
* volume directory then gives you the information to read the other
* files on the tape.

* The first record on the directory file is local to the file. The second
* record gives information about the leader file, the third record is
* for the imagery file and the fourth record is for the trailer file.

P*

* I define two structs. The first, fp, is used to overlay the
* fixed-field-length format of the record and the second, cfp, is used
* to convert the information in fp to standard C data types such as
* strings, ints and floats. The information in cfp can then be used to
* manipulate the files on the tapes.
*/

#define DIRECTORY SIZE 1800 /* fixed-size file */
#define DIRECTORY-RECORDSIZE 360 /* for directory file only */

/*
* This is the structure for a header file file-pointer record
*/

struct fp{
char fixed[12]; /* binary data describing the file */
char type[2]; /* A=ASCII E=EBCDIC */
char blank[2]; /* not used */
char num[4]; /* l=leader 2=imagery 3=trailer */
char name[16]; /* name of file type (leader;imagery,... */
char class[28];
char class code[4];
char datatype [28);
char datatype_code(4];

23

char num records[8];
char lengthl[8]; /* length of first record */
char maxlength[8]; /* biggest record */
char lengthtype[12]; /* file length type (?) */
char length_code[4];
char startvolume[2]; /* what volume file starts on
char end volume[2];
char first_record(8]; /* location of first record in this

* volume. */
char blank2[108];
char num records vol[8]; /* number of records in this volume */
char local use[92];

1;

/*
* This is the above struct converted to standard C data types for ease
* of handling.
*/
struct cfp{
char fixed[13]; /* binary data describing the file */
char type[3]; /* A=ASCII E=EBCDIC */
char name[17]; /* name of file type (leader;imagery,... */
char class[29];
char class code[5];
char datatype[29];
char datatype code[5];
int num records;
int lengthl; /* length of first record */
int maxlength; /* biggest record */
char lengthtype[13]; /* file length type */
char length_code[4];
int start volume; /* what volume file starts on
int end volume;
int first record; /* where is first record in this volume? */
int num records vol; /* number of records in this volume */
char local-use[93];

/*
* Leader file-header record. Not all fields are represented, only the
* ones I was interested in.
*/

struct lfh
{
char fixed[12]; /* binary data describing the file */
char junkl[72]; /* stuff I don't care about */
char cen lat[16]; /* latitude of center pixel */
char cenlong[16]; /* longitude of center pixel */
char cen row[16]; /* row number of center pixel */
char cen-col[16); /* column nurwer of center pixel */
char cor lat[16]; /* Upper Left corner data */
char corllong[16];
char corl row[16];
char corl col[16];
char cor2-lat[16]; /* Upper Right corner data */
char cor2_longtl6];

24

char cor2_row[16);
char cor2_col[16];
char cor3 lat[16]; /* Lower Left corner data.*/ "
char cor3_long[16];
char cor3_row[16];
char cor3 col[16];
char cor4-lat[16]; /* Lower Right corner data */
char cor4 long[16];
char cor4 row[16];
char cor4 col[16];
char nadir_lat[16]; /* Satellite nadir when center pixel

* taken */
char nadirlong[16];
char orientation[16]; /* Image line rotation from East (+ CCW) */
char incidence[16]; /* angle of optical axis to ellipsoid */
char sun az[16]; /* Sun location */
char sun elev[16];
char junk2[80];
char center time[32]; /* time of taking center pixel */
char mission id[16]; /* see SPOT manual for these next 3 */
char sensorid[16];
char spectral mode[16];
char junk3[336];
char pixelsper_line[16]; /* this includes line header and trailer */
char num lines[16]; /* including header line, which has no

* data */

char interleave[16]; /* BIL if band interleave format */
char num bands[16]; /* number of spectral bands present */
char band indicator[256]; /* ?? */
char preprocess[16]; /* see SPOT manuel for these next 4

* members */
char recalib designator[16];
char deconvolve designator[16];
char resampledesignator[16];
char pixel width[16]; /* in arc seconds */
char pixel height[16];
/* There are Tots of remaining fields, but I got the ones I wanted. */1;

/*
* Converted Leader file-header record. Not all fields are represented,
* only the ones I was interested in. See the comments on the
* corresponding fields above.
*/

struct clfh
{
char fixed[13]; /* binary data describing the file */
char cen lat[17];
char cen long[17];
int cenrow;
int cen col;
char corl lat[17];
char corl _long[17];
int izorl_row;
int corl _col;
char cor2 lat[17];
char cor2_long[17];

25

int cor2_row;
int cor2_col;
char cor3_lat[17];
char cor3_ong[17];
int cor3 i-ow;
int cor3 col;
char cor4_lat[17];
char cor4_long[17];
int cor4_row;
int cor4_col;
char nadir lat[17];
char nadir long[17];
float orientation;
char incidence dir;
float incidence;
float sun az;
float sun elev;
char centertime_yr[5];
char center time mo[3];
char center time da[3];
char center time hr[3];
char center_time-mn[3];
char center time sc[3];
char mission id[17];
char sensor id[17];
char spectralmode[.7];
int pixelsper line;
int num lines;
char interleave[17];
int num bands;
char band indicator[257]; /* ?? */
char preprocess[17];
char recalib designator[17];
char deconvolvedesignator[17];
char resample designator[17];
int pixelwidth;
int pixel height;
/* There are Tots of remaining fields, but I got the ones I wanted. */

1;

/*
* This is the include file to parse SPOT imagery files The imagery file
* mostly contains pixels, but the file has a header (the first record)
* that gives format information needed to read the file. Struct im is
* in the SPOT fixed format and is used to overlay the first record in
* the imagery file(s) to get the data needed. The second struct, cim,
* is used to store the parsed data as standard C types and to convert
* data to a PDEF format.
*/

struct im{
char fixed[180]; /* binary data describing the file */
char num records[6; /* Number of image records in file */
char record length[6]; /* See SPOT manual for allowed lengths */
char junkl[24]; /* not used */
/* Pixel group data */
char bits_perpixel[4];

26

char pixelspergroup[4]; /* What is a data group? */
char bytes pergroup[4];
char orderin_group[4];

/* Image data */
char num bands[4]; /* number of spectral bands */
char num -lines[8]; /* excluding top, bottom, border lines */
char num-left[4]; /* number of left border lines */
char numimage pixels[8]; /* per line, including borders */
char num right[f4];
char numtop[4]; /* number of top border lines */
char num bottom[4];
char interleave[4]; /* BIL, etc. See manual for types */

/* Record data for this file */
char recs per line[2]; /* usually 1 */
char recs_per ms line[2]; /* multispectral line, usually 3 records */
char prefix[4]; /* prefix bytes per line, always 32 */
char image[8]; /* image data bytes per line, incl.

* borders */
char suffix[4]; /* suffix bytes per line, always 68 */
char repeat[4]; /* prefix, suffix repeat flag (?) */

/* Prefix and suffix data locators */
char line[8];
char band[8];
char time[8];
char left fill[8];
char right fill[8];
char junk2T96]; /* not interested for now

/* Per-pixel data description */
char left fill bits[4];
char right_fill bits[4];
char max range[8];

1;

* This struct contains the C data types corresponding to the header
* fields picked out by struct im just above.
*/
struct cim
{
char fixed[181]; /* fixed data that starts out */
int num records;
int recordlength;
int bitsperpixel;
int pixelsper group;
int bytespergroup;
mnt order in group!
nt num_bands;
int num lines;
int num left;
int num imagepixels;
int numright;
int numtop;
int num bottom;
char interleave[5];

27

int recsperline;
int recsper ms line;
int pr.efix;
int image;
int suffix;
char repeat[5];
char line[9];
char band[9];
char time[9] ;
char leftfill[9);
char right fill[91;
int left fill bits;
int right fill bits;
int max_range;

/*
* This function takes as input a buffer containing the directory record
* of the volume directory file for a spot image and it parses the
* buffer to change the data into C entities such as null-teminated
* strings, ints and floats. The data are returned in a cfp struct which
* is defined in volume.h.
*/

#include <string.h>
#include "volume.h"I

int
readdirectory(cpp, buffer)

struct cfp *cpp;
char *buffer;

{
struct fp *hp;
extern float tofloato;

hp = (struct fp *) (buffer);

strncpy(cpp->fixed, hp->fixed, 12);

strncpy(cpp->type, hp->type, 2);
strncpy(cpp->name, hp->name, 16);
strncpy(cpp->class, hp->class, 28);
strncpy(cpp->class code, hp->classcode, 4);
strncpy(cpp->data type, hp->datatype, 28);
strncpy(cpp->data type_code, hp->data typecode, 4);
cpp->numrecords = toint(hp->numrecords, 8);
cpp->lengthl = toint(hp->lengthl, 8);
cpp->maxlength = toint(hp->maxlength, 8);

strncpy(cpp->length type, hp->length type, 12);
strncpy(cpp->lengthcode, hp->length code, 4);

cpp->start volume = toint(hp->startvolume, 2);
cpp->endvolume = toint(hp->endvolume, 2);
cpp->firstrecord = toint(hp->firstrecord, 8);
cpp->numrecords vol = toint(hp->num recordsvol, 8);

28

strncpy (cpp->local_use, hp->localuse, 92);}
#include <stdio. h>
#include "volume.h"

printdirectory(cpp, prefix)
struct cfp *cpp;
char *prefix;{
printf("%s ", prefix);
printf("File type (A=ASCII E=EBCDIC): %s\n", cpp->type);
printf("%s "1, pre fix);
printf("File type name: %s\n", cpp->name);
printf("%s "'. prefix);
printf("File class: %s\n", cpp->class);
printf("%s ", prefix);
printf("File class code: %s\n", cpp->class_code);
printf("%s ", prefix);
printf("File data type: %s\n", cpp->data-type);
printf("%s ", prefix);
printf("File data type code: %s\n", cpp->datatype_code);
printf("%s ", prefix);
printf("Number of records in file: %d\n", cpp->numrecords);
printf("%s ", prefix);
printf("Length of first record of file: %d\n", cpp->lengthl);
printf("%s ", prefix);
printf("Length of largest record in file: %d\n", cpp->maxlength);
printf("%s ", prefix);
printf("File length type: %s\n", cpp->length type);
printf("%s ", prefix);
printf("File length type code: %s\n", cpp->lengthcode);
printf("%s ", prefix);
printf("File starts on volume: %d\n", cpp->startvolume);
printf("%s ", prefix);
printf ("File ends on volume: %d\n", cpp->endvolume);
printf("%s ", prefix);
printf("Location of first file record in this volume: %d\n",

cpp->firstrecord);
printf("%s "1, prefix);
printf("Number of records in this volume: %d\n", cpp->num-recordsvol);
printf("%s ", prefix);
printf("Notes: %s\n", cpp->localuse);

putchar (' \n');I

/,
* This function takes as input a buffer containing the directory record
* of the leader file for a spot image and it parses the buffer to
* change the data into C entities such as null-teminated strings, ints
* and floats. The data are returned in a clfh struct which is defined
* in leader.h.
*/

#include <string.h>

#include "leader.h"

#define RECORDSIZE 3960 /* from parsing directory file */

29

int
read leader(cpp, buffer)

struct clfh *cpp;
char *buffer;

struct lfh *hp;
extern float tofloato;

hp = (struct lfh *) (.juff'sr + RECORDSIZE);

strncpy (cpp->fixed, hp->fixed, 12);

strncpy(cpp->cen -lat, hp->cen_lat, 16);
strncpy(cpp->cen-long, hp->cen long, 16);
cpp->cen_row = toint(hp->cen -row, 16);
cpp->cen-col = toint(hp->cen-col, 16);

strncpy(cpp->corl lat, hp->corl lat, 16);
strncpy(cpp->corl long, hp->corl1 long, 16);
cpp->corl-row = toint(hp->corl_row, 16);
cpp->cor1_col = toint(hp->corl-col, 16);

strncpy(cpp->cor2_lat, hp->cor2_lat, 16);
strncpy(cpp->cor2_long, hp->cor2_-long, 16);
cpp->cor2_row = toint(hp->cor2_row, 16);
cpp->cor2_col = toint(hp->cor2_col, 16);

strncpy(cpp->cor3_-lat, hp->cor3_lat, 16);
strncpy(cpp->cor3_-long, hp->cor3_long, 16);
cpp->cor3_row = toint(hp->cor3_row, 16);
cpp->cor3_col = toint(hp->cor3_col, 16);

strncpy(cpp->cor4_-lat, hp->cor4_lat, 16);
strncpy(cpp->cor4_-long, hp->cor4_long, 16);
cpp->cor4_row = toint(hp->cor4_row, 16);
cpp->cor4_col = toint(hp->cor4_col, 16);

strncpy(cpp->nadir -lat, hp->nadir lat, 16);

strncpy(cpp->nadir_long, hp->nadir-long, 16);

cpp->orientation = tofloat(hp->orientation, 16);

cpp->incidence-dir = *hp.->incidence; /* first char incidence is
* direction *

cpp->incidence = tofloat(hp->incidence + 1, 15);
cpp->sun -az = tofloat(hp->sun -az, 16);
cpp->Sun-elev =tofloat(hp->sun-elev, 16);

strncpy(cpp->center-time -yr, hp->center-time, 4);
strncpy(cpp->center-time_mo, hp->center-time + 4, 2);
strncpy(cpp->center time_da, hp->center time + 6, 2);
strncpy(cpp->center-time -hr, hp->center-time + 8, 2);
strncpy(cpp->center -time_nn, hp->center -time + 10, 2);
strncpy(cpp->center-time-sc, hp->center-time + 12, 2);

strncpy(cpp->mission-id, hp->mission id, 16);
strncpy(cpp->sensor -id, hp->sensor-i:d, 16);
strncpy(cpp->spectral-mode, hp->spectral-mode, 16);

30

cpp->pixelsyper line = toint (hp->pixelsper line, 16);
cpp->num lines =toint(hp->num lines, 16);

strncpy (cpp->interleave, hp->interleave, 16);
app->num bands = toint(hp->num bands, 16);
strncpy(cpp->band -indicator, hp->band-indicator, 256);
strncpy (cpp->preprocess, hp->preprocess, 16);
strncpy(cpp->recalib designator, hp->recalib designator, 16);
strncpy (cpp->deconvod-ve designator, hp->deconvolve-designator, 16);
strncpy (cpp->resample designator, hp->resample designator, 16);
cpp->pixel -width =toint(hp->pixel width, 16);
cpp->pixel-height =toint(hp->pixel -height, 16);

#include <stdio h>
#include "'leaderht

mnt
print_leader(cpp)

struct clfh *cpp;

{rnf"netrpxlLttue scp>e a)
printf("\nCenter pixel Latitude: %s", cpp->cen-lont);
printfV'\nCenter pixel Longitude: s, cp-cpp->celog)
printf("\nCenter pixel Rowu: %d", cpp->cen-ow);

printf("\nCner pixel Lmn:tde%", cpp-> col t)

printf("\nCorner 1 pixel Latgitude: %s", cpp->corl lTn);
printf("\nCorner 1 pixel Longitude:%", cpp->corl long);
printf("\nCorner 1 pixel Rowu: %d", cpp->corl-ow);

printfV'\\nCorner 1 pixel CLumnu: %", cpp->cor col;)

printf("\nCorner 2 pixel Latgitude: %s", cpp->cor2_laton);
printf("\nCorner 2 pixel Lowgitude: s, cp->corlong);
printf("\nCorner 2 pixel Rowu: %d, cpp->cor2o);

printf("\\nCorner 2 pixel CLaumn: %s", cpp->corcol;)

printf("\nCorner 3 pixel Latgitude: %s", cpp->cor3_laton);
printf("\nCorner 3 pixel Longitude: , " cp->corlong);
printf("\nCorner 3 pixel Rowu: %d", cpp->cor3o);

printf("\\nCorner 3 pixel CLaumn: %", cpp->corcol;)

printf("\nCorner 4 pixel Latgitude: %s", cpp->cor4_laton);
printfV'\nCorner 4 pixel Longitude:%", cpp->cor4 _long);;
printf("\nCorner 4 pixel Rowu: %d", cpp->cor4o);
printf("\n~oneadr 4apie Column %d, pp-coir_cl);
printf ("\nNadir Latgitude: %s", cpp->nadir latg);

printf ("\n\nPhoto orientation: %f", cpp->orientation),;

printf("\n\nDirection of incidence (L=left R=right): %"
cpp->incidence dir);

printf("\nPhoto angle of incidence with ellipsoid at center: %f",
cpp->incidence);

printf("\n\nSun azimuth: %f", cpp->sun -az);
printf ("\nSun elevation: %f", cpp->sun-elev);

31

printf("\n\nYear: %s\nMonth: %s\nDay: %s\nHour: %s\nMinute: %s\nSecond: %s",
cpp->center timeyr, cpp->center time mo, cpp->center-time-da,
cpp->center~time -hr, cpp->center time -mn, cpp->center time sc);

printf("\n\nMission ID: %s", cpp->mission -id);
printf("\nSensor ID: %s", cpp->sensor -id);
printf("\nSpectral mode: %s"', cpp->spectral-mode);

printf("\n\nPixels per line: %d", cpp->pixeilsyer -line);
printf("\nI~umber of lines: %d", cpp->num -lir.es);

printfQ'\n\nBand interleave factor: %sl', cpp->interleave);
printf("\nNumber of bands: %d", cpp->num bands);

printf (t\n\nPreprocess level: %s", cpp->preprocess);
printf ("\nRecalibration designator: %s", cpp->recalib Idesignator);
printfQ'\nDeconvolution designator: %s", cpp->deconvolve designator);
printf("\nResampling designator: %s", cpp->resample-desig9nator);

printf("\n\nPixel width on ground in meters: %d", cpp->pixel 'width);
printf("\nPixel height on ground in meters: %d", cpp->pixel height);

putchar('\n');

" This function takes as input a buffer containing the directory record
" of the imagery file for a spot image and it parses the buffer to
* change the data int-o C entities such as null-teminated strings, ints
" and floats. The data are returned in a cim struct which is defined in
* imagery.h.

#include <string.h>
#include "iaeyh

i nt
read -imagery(cpp, buffer)

struct cim *cpp;
char *buffer;

struct im *hp;

hj = (struct im *) (buffer);

strncpy (cpp->fixed, hp->fixed, 180);
cpp->num -records = toint(hp->num-records, 6);
cpp->record-length = toint(hp->record length, 6);

/* Pixel group data */
cpp->bitsperpixel = toint(hp->bitsperpixel, 4);
cpp->pixelsyper-group =toint(hp->pixelsper_group, 4);
cpp->bytes-per-group =toint(hp->bytesper group, 4);
cpp->order_in_group = toint(hp->order in group, 4);

1* Image data */
cpp->num -bands = toint(hp->num -bands, 4);
cpp->num -lines = toint(hp->num lines, 8);
cpp->num-left = toint(hp->num-left, 4);

32

cpp->numimagepixels = toint(hp->nura_imagepixels, 8);
cpp->num_right = toint(hp->numright, 4);
cpp->num_top = toint(hp->num top, 4);
cpp->num_bottom = toint(hp->num bottom, 4);
strncpy(cpp->interleave, hp->interleave, 3);

/* Record data in this imagery file */
cpp->recsperline = toint(hp->recsperline, 2);
cpp->recsper ms line = toint(hp->recsper msline, 2);
cpp->prefix = toint(hp->prefix, 4);
cpp->image = toint(hp->image, 8);
cpp->suffix = toint(hp->suffix, 4);
strncpy(cpp->repeat, hp->repeat, 4);

/* Prefix and suffix data locators */
strncp'(cpp->line, hp->line, 8);
strncpy(cpp->band, hp->band, 8);
strncpy(cpp->time, hp->time, 8);
strncpy(cpp->left_fill, hp->leftfill, 8);
strncpy(cpp->right_fill, hp->rightfill, 8);

/* Pixel data description */
cpp->leftfill bits = toint(hp->leftfill bits, 4);
cpp->right fillbits = toint(hp->rightfill bits, 4);
cpp->max range = toint(hp->max range, 8);

}
#include <stdio.h>
#include "imagery.h"

#define RECORDSIZE 5400

printimagery(cpp)
struct cim *cpp;{
putchar ('\n');

printf("\nNumber of image records: %d", cpp->numrecords);
printf("\nImage record length: %d", cpp->record length);
printf("\nBits per pixel: %d", cpp->bitsperpixel);
printf("\nPixels per pixel group: %d", cpp->pixelspergroup);
printf("\nBytes per pixel group: %d", cpp->bytes_pergroup);
printf("\nPixel ordering in group: %d", cpp->order in-group);
printf("\nNumber of spectral bands: %d", cpp->num_bands);
printf("\nLines per image not including borders: %d",

cpp->num lines);
printf("\nLeft border pixels per line: %d", cpp->numleft);
printf("\nImage pixels per line: %d", cpp->numimagepixels);
printf("\nRight border pixels per line: %d", cpp->num right);
printf("\nNumber of top border lines: %d", cpp->numtop);
printf("\nNumber of bottom border lines: %d", cpp->numbottom);
priritf("\nInterleave type: %s", cpp->interleave);

printf("\nData records per line: %d", cpp->recs per line);
printf("\nData records per multispectral line: %d",

cpp->recsper- ms line);
printf("\nBytes of prefix data per record: %d", cpp->prefix);
printf("\nBytes of image data per record: %d", cpp->image);

33

printf("\nBytes of suffix data per recorl: %d", cpp->suff ix);
printf("\nPrefix/suffix repeat flag: %s", cpp->repeat);

printf("\nScan line number locator: %s", cpp->line):
printf("\nImage (band) number locator: %s", cpp->band);
printf("\nTime of scan line locator: %s", cpp->time);
printf("\nLeft-fill count locator: %s", cpp->leftfill);
printf("\nRight-fill count locator: %s", cpp->rightfill);

printf("\nLeft-fill bits within pixel: %d", cpp->left fill bits);
printf("\nRight-fill bits within pixel: %d", cpp->rightfi~lbits);
printf("\nMaximum value of pixel: %d", cpp->max-range);

putchar (' \n');I

/,
* This program reads SPOT data in and writes out separate arrays for
* the green, red, and infrared bands. This only works for multiband
* data in band interleaved format.
*/

#include <stdio .h>
#include <sys/file.h>
#include "volume.h"
#include "imagery.h"

main(argc, argv)
int argc;
char **argv;

{
char *buffer;
char *green, *red, *infrared; /* unpacked image line buffers */
int i;
int fd, /* general-purpose file descriptor */

fdg, fdr, fdir, /* file descriptors for unpacked data */
line length, /* number of bytes per imagery record */
line front, /* number of junk pixels at line start */
line back; /* number of junk pixels at line end */

int image width; /* number of image pixels per line */
struct cfp dsl; /* directory struct for first volume */
struct cfp ds2; /* directory struct for second volume */
struct cim is; /* imagery header struct */
extern int toint(), read leadero;
extern char *malloco(;
extern char *realloc(;

if (argc < 4)
fprintf(stderr, "Usage: %s directoryl directory2 imageryl imagery2\n",

argv[0]), exit(0);

/* Open and read volume directories to get info about imagery files */
buffer = malloc (DIRECTORYSIZE);
if ((fd = open(argv[l], 0_RDONLY, 0775)) <= (:)
perror ("open volume directory failed"), exit(1);

if (read(fd, buffer, DIRECTORY SIZE) != DIRECTORY SIZE)
perror("read volume directory failed"), exit(l);

34

/* imagery info is in the third record */
read_directory(&dsl, buffer + 2 * DIRECTORYRECORDSIZE);
close (fd);

if ((fd = open(argv(2], ORDONLY, 0775)) <= 0)
perror("open volume directory failed"), exit(l);

if (read(fd, buffer, DIRECTORYSIZE) != DIRECTORYSIZE)
perror("read volume directory failed"), exit(l);

readdirectory(&ds2, buffer + 2 * DIRECTORYRECORDSIZE);
close (fd);

/* Open and read the first record of the first imagery file */
linelength = dsl.maxlength;
buffer realloc(buffer, linelength);
if ((fd open(argv[31, 0_RDONLY, 0775)) <= 0)
perror ("open imagery failed"), exit(l);

if (read(fd, buffer, line length) != line length)
perror("read imagery failed"), exit(l);

read imagery(&is, buffer);

linefront = 32 + is.numleft;
lineback = is.numright + 68;
image-width = is.num image_pixels;

/*
" Imagery is in two files; necessary info is in two volume directory
* files and in the imagery header. The leader file is not important
" at this stage.
*/

/* Open files to receive the unpacked image as three color arrays */
if ((fdg = open ("green", 0 WRONLY I 0_CREAT, 0775)) <= 0)

perror("open green failed"), exit(l);
if ((fdr = open("red", 0 WRONLY I 0 CREAT, 0775)) <= 0)
perror("open red failed"), exit(l);

if ((fdir = open("infrared", 0 WRONLY I 0 CREAT, 0775)) <= 0)
perror("open infrared failed";), exit(l);

green = malloc(imagewidth);
red = malloc(image_width);
infrared = malloc(image width);

#ifdef FULLIMAGE

/*
" Read in the first nalf of the image from the first imagery file. We
" are currently at the beginning of the first image data line.
k/

for (i = 0; i < (dsl.num records vol - 1) / 3; ++i){
Iseek(fd, :long) line_front, 1);
read(fd, green, image width);
write(fdg, green, imagewidth);
lseek(fd, (long) (lineback + line front), 1);
read(fd, red, imagewidth);
write(fdr, red, imagewidth);
lseek(fd, (long) (line back + linefront), 1);
read(fd, infrared, imagewidth);
wri-te(fdir, infrared, imagewidth);
lseek(fd, (long) lineback, 1);

3
35

/* Open and read the first record of the second imagery file */
line length = ds2.maxlength;
buffer = realloc(buffer, linelength);
if ((fd = open(argv[4], 0_RDONLY)) == 0)

perror ("open imagery failed"), exit(i);
if (read(fd, buffer, line-length) != linelength)
perror("read imagery failed"), exit(l);

readdirectory(&is, buffer);

/* Read in the second half of the image from the second imagery file */
for (i = 0; i < (ds2.num records vol - 1) / 3; ++i){

lseek(fd, linefront, 1);
read(fd, green, imagewidth);
write(fdg, green, image width);
lseek(fd, lineback + linefront, 1);
read(fd, red, imagewidth);
write(fdr, red, image-width);
iseek(fd, line back + line front, 1);
read(fd, infrared, imagewidth);
write(fdir infrared, imagewidth);
lseek(fd, lineback, 1);

)

#else FULL IMAGE /* only read out 512 x 512 subset images */
printf("ine front=%d line back=%d line length=%d image width=%d\n",

line front, line back, line length, imagewidth);
lineback += image_width - 512;
printf ("newlineback=%d\n", lineback);

for (i = 0; i < 512; ++i){
lseek(fd, line front, 1);
read(fd, green, 512);
write(fdg, green, 512);
lseek(fd, (long) (lineback + linefront), 1);
read(fd, red, 512);
write(fdr, red, 512);
lseek(fd, (long) (lineback + linefront), 1);
read(fd, infrared, 512);
write(fdir, infrared, 512);
lseek(fd, (long) line-back, 1);

}
#endif FULLIMAGE

3

36

APPENDIX D. PDEF PARSER FOR SPOT DATA.

This appendix presents a PDEF narser for SPOT data which is written using the pars-
ing programs "lex" and "yacc." Notice how much simpler this code is than that presented
in Appendix C. This code is also much more general than that found in Appendix C. To
parse a different type of file only small changes need be made to the parser and a new
keys.h file will have to be defined. The more PDEF parsers that you write, the easier it
gets.

The lex and yacc programs began as part of the UNIX operating system, but they
have proven useful enough to be written for other operating systems as well. Implementa-
tions of lex and yacc exist for MSDOS, VMS and OS/2. Other implementations probably
exist. This means that this parser should be portable to other operating systems. In fact,
since lex and yacc generate C programs, the results of the operations of lex and yacc can
be compiled on systems on which lex and yacc themselves are not available.

37

/** IJEX
This lex code parses a PDEF information file which contains information
about a raster data file.
The characters 1:1 and 1#' are reserved to identify keys and for
in-file comments.

#include <stdio.h> /* to get EOF *
#include <math.h> /* get type of atof()*
#include "info.hII /* definition of cnode,*

/* This is parse.tab.h if generated by bison; y.tab.h if generated by yacc *
#include tparse .tab .h"
1* #include "y.tab.h" /* if generated by yacc *

name [A-Za-zJ?[-A-Za-z_0-9]
phrase [A-Za-z]?[-A-Za-z_0-9 ;O
integer [-+]? [079]
real [-+1 ? [0-93 [*t 9
word [A:#\n \t]
line [A :#\nl
string (A:#]

a [Aa]
b [Bb]
c [Cc]
d [Dd]
e [Ee]
f [Ff]
g [Gg]
h [Hh]
i [i

1 IMl]

n [Nn]
o [00]
p PPI
r ERr]
s [Ss]
t ETtI
y EYy]
sp I

%START S
%a 3000
%0 6000

ut$u

1* Comment; ignore *
1* printouto; /* DEBUG *

Atlji) {t}{l} {e} I
A(C) {ol {m} {m}{e}{n} {t} I
Al eljal~d}el{rl\ {n}{o}{t}{e}{sj: I

38

A{i}{m}{a}{g}{e}{r}{y}\ {n}{o}{tl{e}{s}: I
A{t}{r}{a}{i}{l}{e}{r}\ {n){ol{t){e}{s}: I
A{n){o}{t}{e}{s}: { /* multiline fields may follow these keys *1

yyless(yyleng - 1); /* push back ':' */
yylval.string yytext;
BEGIN S; /* string mode */
return KEY;

}
A{phrase}+: { /* This could be {name}+: if no spaces allowed */

yyless(yyleng - 1); /* push back ':' */
yylval.string = yytext;
return KEY;

}
{real}* { /* This could get a monster like " ; oh well. */

yylval.real = atof(yytext);
return REAL;

I
{integer}+

yylval.integer = atoi(yytext);
return INTEGER;

}
{word)+

yylval.string = yytext;
return STRING;

}
<S>{string}+ /*

For matching a multi-line string, I am using a
mode that is so permissive that it is also
matching the next key. Since the key
must begin a line, I just search backwards to find
the last '\n' and push the part after
this '\n' back to the input stream. Of course, this
behavior means that a 'string' may not end the
file being scanned; i.e. we may not be in string mode
at EC.F. A way to finesse this is to have the key
END: at the end of the file being scanned.*/
int i;

for (i = 0; yytext[yyleng - 1 - i] != '\n'; ++i)

yyless(yyleng - 1 - i); /* push back next key */
yylval.string = yytext;
BEGIN 0;
return STRING;

}
\n /* Prevent spurious newlines */ }

; /* This filters out leftover separators */ 1

#undef yywrap

yywrap()
{

return EOF;

39

%{
/** YACC

* This is a yacc program to Parse a PDEF information file
*

* Entries in the form of 'entry' structs are formed into a list
* which is based on the global (struct entry *) 'infolist'
,

* Key phrase entries are lowercased for ease of comparison.
*/

#include <stdio.h> /* define NULL, stderr */
#include <ctype.h> /* isuppero, tolower(, etc. */
#include "info.h"
#include "keys.h" /* Key phrases are defined here */

/* Always define YYDEBUG. Set extern int yydebug=1 to turn on debugging. */
#define YYDEBUG 1

#define NONAME ((char)O)

/*
* This is where the item list gets built. Initialized to 0 as an extern.
*/

struct entry *infolist;

/* Local variables */
static struct entry *item;

extern char *malloc();

%union {
int integer;
double real;
char *string;
int *pixval;
cnode *colormap;}

%start info

%token <string> KEY
%token <integer> INTEGER
%token <real> REAL
%token <string> STRING
%token <colormap> COLORMAP

%type <string> key
%type <pixval> pixval
%type <colormap> cmap

%%

info /* no input */
i info entry

,40

40

entry key INTEGER
= { /* Don't need the 11=1" sign but more readable with it. */

item->value->integer = $2;
item->type = INTEGER;

}
key REAL

item->value->real = $2;
item->type = REAL;}

key STRING

item->value->string = malloc(strlen($2) + 1);
strcpy(item->value->string, $2);
item->type = STRING;

}
key cmap

item->value->colormap = $2;
item->type = COLORMAP;

}
key { ; /* No associated value; Do nothing. */
error { ; /* Do nothing. Report error. */

key KEY

/*
* This must be defined as an intermediate when parsing a
* string data type since parsing
* only uses a single char buffer and parsing two strings
* in a row will cause the second one to overwrite the
* first one. Took a long time to find this out. Sigh.
* Since I had to define it for parsing strings, I may as
* well use it for everything. Good place to allocate
* a new item struct and link it into infolist.
*/

if(check key($l) == NONAME)
{
fprintf(stderr, "Key \"%s\" not found\n", $1);
YYERROR; /* Cannot find key; declare an error. */}

else{
alloc item($1);}o

cmap pixval

$$ = (cnode *)malloc(sizeof(cnode));
$$->pixval = $1;
$$->next = (cnode *)NULL;}
cmap pixval

$$ = (cnode *)malloc(sizeof(cnode));

41

$$->pixval =$2;

$$->next - $1;

pixval INTEGER INTEGER INTEGER INTEGER

$$ - (int *)malloc(4 *sizeof(int));

W$t01 $1;
$$[11 $2;

$$2 $3;
$$3 $4;

check key (key)
char *key;

int i;

/* Destructively lowercase key *
for (i =0; 1 < strlen(key); ++i)
key[i] - isupper(key[i]) ? tolower(key[i]) :key[i];

for (i - 0; *keys[i] !- NONAME; ++i)
if (strcmp(keystiJ, key) -- 0)

return (int)key;

return NONAME;

alloc-item(key)
char *key;

item - (struct entry *)mpalloc(szeof(struct entry));
item->key - malloc(strlen(key) + 1);
strcpy (item->key, key);

item->value -(vals *)malloc (sizeof (vals));
item->type =0; 1* no defined type yet *

/* link the item into the item list *
item->next -infolist;
infolist - item;

yyerror (s)
char *s;

perror(s);

42

" A main program to test parsing of PDEF information'files.
" This code prints out the various fields and data types defined.

#include <stdio~h
#include "info.hil 1* Locally defined types, etc. *
#include "parse.tab.h" 1* bison/yacc defined types *

main()

int error;
cnode *cmap;
struct entry *current;
cnode *reverse-colormap();

1* yydebug = 1; /* debug mode if 1 *
error = yyparseo;
if (error != 0)
yyerror("Parse Error returned by yyparse() to maino: "1);

else{
printf("\n\nEntering printout of parsed infolist:\n\n");
for (current = infolist; current != NULL; current = current->next){

switch (current->type) I
case 0: 1* no value associated with key *

printf (1%s: \n", current->key);
break;

case INTEGER: 1* integer types *
printf ("%s: \tINTEGER %d\n",

current->key, current->value->integer);
break;

case REAL: /* floating-point number types *
printf("%s:\tREAL %lf\n",

current->key, current->value->real);
break;

case STRING: /* string types *
printf("%s:\tSTRING %s\n",

current->key, current->value->string);
break;

case COLORMAP: 1* colormap type (mnt *)
printf("1%s:\n"1, current->key);
priritf("1 pixel red green blue\n");
printf("1 --- --- \n;

for (cmap =current->value->colormap; crnap != NULL;
cmap =cmap->next) I

printf ("%l~d%l0d%l0d%l~d\n"1,
cmap->pixval (0], cmap->pixval [1],
cmap->pixval [2), cmap->pixval [3]);

break;
default:

fprintf(stderr, "Cannot find type %d\n", current->type);

printf("\nAll done. Bye n~w.\n");

43

APPENDIX E. PDEF PROGRAM TO USE PARSED SPOT DATA.

This appendix shows how programs can use a PDEF file to read and work with SPOT
data. The program listed here uses a PDEF file to make separate red, green, and blue
images from the SPOT band-interleaved image file in its distributed format.

44

/*

* This program uses a PDEF information file to read SPOT data in and
* writes out separate arrays for the green, red, and infrared bands.
* This only works for multiband data in band interleaved format.
*/

#include <stdio.h>
#include <sys/file.h>
#include "info.h" /* Locally defined types, etc. */
#include "parse.tab.h" /* bison/yacc defined types */

#define LINE HEADER 32
#define LINE-TRAILER 68
#define TRUE 1
#define FALSE 0
#define FULLIMAGE /* undefine this to get 512x512 images */

main(argc, argv)
int argc;
char **argv;

{
char *buffer;
char *green, *red, *infrared; /* unpacked image line buffers */
struct entry *current; /* used-to read the parse list */
int i;
int fd, /* general-purpose file descriptor */

fdg, fdr, fdir, /* file descriptors for unpacked data */
iine-lengthl, /* number of bytes per imagery record */
linelength2,
numberrecordsl, /* number of records in image files */
number records2,
line_f-ront, /* number of junk pixels at line start */
line back; /* number of junk pixels at line end */

int imagewidth; /* number of image pixels per line */
int error;
int image = FALSE; /* Boolean to see if image data */
extern char *malloc(;
extern char *realloc(;

if (argc < 3)
fprintf(stderr, "Usage: %s imageryl imagery2 < infofile\n", argv(0]), exit

/* yydebug = 1; /* debug mode if 1 */
error = yyparseo;
if (error != 0)
{
yyerror("Parse Error returned by yyparse() to main(): ");
exit(l);

I

/* Get the information needed from the parsed infolist. */
for (current = infolist; current != NULL; current = current->next){
/* Get info for first imagery file */
if (strcmp("imagery length of largest record in.file", current->key)

== 0)
line-length2 = linelengthl = current->value->integer;

45

if (strcmp("imagery number of records in this volume", current->key)
-- 0)

number records2 = number recordsl = current->value->integer;
#ifdef FOO 7* Both images are the same anyway. */

/* Get info for second image file */
if (strcmp("length of largest record in file", current->key) == 0)
linelength2 = current->value->integer;

if (strcmp("number of records in this volume", current->key) 0)
numberrecords2 = current->value->integer;

#endif
/* Get info originally from image header */
if (strcmp("left border pixels per line", current->key) -= 0)

line front = LINEHEADER + current->value->integer;
if (strcmp("right border pixels per line", current->key) == 0)

line back = current->value->integer + LINE TRAILER;
if (strcmp("image pixels per line", current-">key) == 0)
imagewidth = current->value->integer;

/* Open and seek past the first record of the first imagery file */
buffer = realloc(buffer, line lengthl);
if ((fd = open(argv[l], O_RDONLY, 0775)) <= 0)
perror ("open imagery failed"), exit(l);

if (lseek(fd, line lengthl, 0) == -1)
perror("ilseek imagery failed"), exit(l);

/* Open files to receive the unpacked image as three color arrays */
if ((fdg = open ("green", 0_WRONLY I OCREAT, 0775)) <= 0)
perror ("open green failed"), exit(1);

if ((fdr = open("red", 0 WRONLY I 0 CREAT, 0775)) <= 0)
perror ("open red failed"), exit(l);

if ((fdir = open("infrared", 0 WRONLY I 0 CREAT, 0775)) <= 0)
perror("open infrared failed"), exit(l);

green = malloc(image width);
red = malloc(imagewidth);
infrared = malloc (image_width);

printf ("line frornt=%d line back=%d line length=%d\n imagewidth=%d number re
linefront, lineback, linelength2, imagewidth, numberrecords2);

#ifdef FULLIMAGE

/*
* Read in the first half of the image from the first imagery file. We
* are currently at the beginning of the first image data line.
*/

for (i = 1; i <= number recordsl / 3; ++i){
lseek(fd, (long) line_front, 1);
read(fd, green, imagewidth);
write(fdg, green, imagewidth);
lseek(fd, (long) (line-back + line-front), 1);
read(fd, red, image_width);
write(fdr, red, image width);
lseek(fd, (long) (line back + line front), 1);
read(fd, infrared, imagewidth);

46

write (fdir, infrared, image width);
lseek(fd, (long) lineback, 1);

}
printf("Image file #1 done: Last record read was %d\n", --i * 3 + 1);

/* Open and read the first record of the second imagery file */
buffer = realloc(buffer, linelength2);
if ((fd = open(argv[2], O_RDONLY)) == 0)
perror ("open imagery failed"), exit(I);

if (lseek(fd, linelength2, 0) == -1)
perror("ilseek imagery2 failed"), exit(1);

/* Read in the second half of the image from the second imagery file */
for (i = 1; i <= number records2 / 3; ++i){

lseek(fd, linefront, 1);
read(fd, green, imagewidth);
write(fdg, green, image width);
lseek(fd, line back + line_front, 1);
read(fd, red, image-width);
write(fdr, red, imagewidth);
lseek(fd, line back + linefront, 1);
read(fd, infrared, imagewidth);
write (fdir, infrared, image-width);
lseek(fd, lineback, 1);}

#else FULL IMAGE /* only read out 512 x 512 subset images */
lineback += imagewidth - 512;
printf ("new-line back=%d\n", lineback);

for (i = 0; i < 512; ++i){
lseek(fd, (long) line_front, 1);

read(fd, green, 512);
write(fdg, green, 512);
lseek(fd, (long) (lineback + linefront), 1);
read(fd, red, 512);
write(fdr, red, 512);
lseek(fd, (long) (line back + line-front), 1);
read(fd, infrared, 512);
write(fdir, infrared, 512);
lseek(fd, (long) line-back, 1);

}
#endif FULLIMAGE

47

APPENDIX F. STORING VECTOR AND POLYGON DATA USING PDEF.

This appendix shows how programs can use a PDEF file to read and work with
vector data. There are no programs here, but rather a schematic design of a file struc-
ture suitable for handling vector data. The information about what should go in these
files is taken from a United States Geological Survey (USGS) publication. 1 This docu-
ment details the format used for a GIS called the Geographic Information Retrieval
and Analysis System (GIRAS).

GIRAS has some quaint archaisms, such as using 80-character card images and
EBCDIC character encoding, but the basic needs of polygon data are taken care of in
GIRAS, and these needs guided the design of the format outlined in this appendix.

A GIRAS map is divided into sections which are treated separately, as they will
be in this design. For PDEF, each GIRAS map will be in its own directory. Follow-
ing is a schematic of the directory structure. Directories are capitalized and files have
lowercase names. A description of each of the files mentioned below will follow in
the body of the text:

Map Directory:
map.info
attribute.info
Section Directory: (may be several of these directories)

section.info
node.info
node.data
arc.info
arc.index
arc.data
polygon.info
polygon.index
polygon.data

All files that have the suffix ".info" are PDEF information files; all other files
contain binary data that is ancessed using the descriptions in the information files.
These names are conventional and not enforced by PDEF. A map directory con-
tains all information about a GIRAS map. Nodes, arcs, and polygons are stored in
separate files. Arc files refer back to nodes and polygon files refer back to arcs.

A node is stored as a single x,y point with its associated node ID number.
Arcs are stored as a series of x,y points. Nodes at the ends of arcs are referenced
to the node file. Polygons are stored by referring to the arcs of which they are
composed. So to read the data for a polygon, arc data and node data must be ac-
cessed as well. Attributes are associated with polygons and also with arcs. This is
redundant. However, by having attributes attached to aics as well as polygons, the

1 United States Geological Survey, "Land Use and Land Cover Digital Data from 1:250,000- and
1:100,000-Scale Maps." USGS Date Users Guide no. 4.

48

validity of a polygon can be tested after it is assembled from its arcs; all attributes
should check. Encoding attributes in arcs also allows an arc to form a linear
feature independent of a polygon. For a linear feature, both arc attributes are the
same. A description of each of the file types follows:

map.info

The map.info file contains global information about the map such as any
codes and catalog numbers, map projections and scales, source information and
dates, quality and tolerance, and other housekeeping data. This kind of data lends
itself very well to a PDEF information file format.

attribute.info
This is an attribute table assigning attribute numbers (also called "codes" or

"indexes") to their meanings. This is done by matching numbers to text strings. The
text strings define the meanings of the attributes. If attribute codes are invariant, this
file could actually be at the topmost directory level and apply to all map files under it.

Section Directory

To keep index numbers and coordinate numbers small, data is segmented into
sections. A directory is defined for each section under a given map. The structure of
each of these directories is the same. The rest of the files described below are in a
section directory.

section.info
This file gives the glot 1 information used in this section. This includes the

bounding coordinates of the section, a section number, processing history, and other
cataloging data.

node.info

A declaration of the data structure used to encode a node is in here. Nodes have
an x,y coordinate and a node index number, so this file may look like this:

number of bytes for x coordinate: 2
number of bytes for y coordinate: 2
number of bytes for node index number: 4

Nodes are then read from the node.data file using this declared structure, i.e. the
offset from one node to the next is 8 bytes.

node.data

This is a binary file of node data as described in the node.info file.

49

arc.hifo
This is a PDEF information file describin" the format of data in the binary

files arc.index and arc.data.
arc.index

This is a binary file of data giving information about arcs whose coordinates
are stored in arc.data. Formatting of this file is specified in arc.info. This file con-
tains offsets and point couns needed to read data from arc.data. It also contains
other information about arcs such as the node numbers of the beginning and end-
ing node. Each arc has a fixed-length record in this file. An example of the con-
tents of such a record is:

arc index number
beginning node index number
ending node index number
number of points
iata file offset to first point

left attribute
right attribute
left polygon
right polygon

arc.data
This is a binary file consisting of nothing but sequences of x,y points. The length

of each coordinate in bytes is specified in the arc.info file.

polygon.info
This is a PDEF inforr. .ion file describing the format of data in the binary files

polygon.index and polygon.data. Comments and other global data, such as the total
number of polygons in this section, are put in here as well.

polygon.index
This is a binary file of data giving information about polygons whose arc index

numbers are stored in polygon.data. Formatting of this file is specified in
polygon.info. This file contains offsets and point counts needed to read data from
polygon.data. It also contains other information about polygons, such as the associated
attribute index. Each polygon has a fixed-length record in this file. An example of the
contents of such a record is:

polygon index number
number of arcs
data file offset to first arc index
attribute

50

polygon.data

This binary file contains arc indices as signed integers. A negative arc
number here means that the arc is to be traversed in a reverse direction in order to
traverse the polygon in a positive (clockwise) sense.

51

